
Journal of Computational Physics 229 (2010) 728–744
Contents lists available at ScienceDirect

Journal of Computational Physics

journal homepage: www.elsevier .com/locate / jcp
Modeling electrokinetic flows in microchannels using coupled lattice
Boltzmann methods

Moran Wang *, Qinjun Kang
Los Alamos National Laboratory, Mail Stop T003, Los Alamos, NM 87545, United States
a r t i c l e i n f o

Article history:
Received 24 October 2008
Received in revised form 24 September
2009
Accepted 3 October 2009
Available online 12 October 2009

Keywords:
Electrokinetic flows
Lattice Boltzmann method
Multiphysical transport
Poisson–Boltzmann model
Dynamic model
Microfluidics and nanofluidics
0021-9991/$ - see front matter Published by Elsevi
doi:10.1016/j.jcp.2009.10.006

* Corresponding author. Tel.: +1 505 6640698; fa
E-mail addresses: mwang@lanl.gov (M. Wang), q
a b s t r a c t

We present a numerical framework to solve the dynamic model for electrokinetic flows in
microchannels using coupled lattice Boltzmann methods. The governing equation for each
transport process is solved by a lattice Boltzmann model and the entire process is simu-
lated through an iteration procedure. After validation, the present method is used to study
the applicability of the Poisson–Boltzmann model for electrokinetic flows in microchan-
nels. Our results show that for homogeneously charged long channels, the Poisson–Boltz-
mann model is applicable for a wide range of electric double layer thickness. For the
electric potential distribution, the Poisson–Boltzmann model can provide good predictions
until the electric double layers fully overlap, meaning that the thickness of the double layer
equals the channel width. For the electroosmotic velocity, the Poisson–Boltzmann model is
valid even when the thickness of the double layer is 10 times of the channel width. For het-
erogeneously charged microchannels, a higher zeta potential and an enhanced velocity
field may cause the Poisson–Boltzmann model to fail to provide accurate predictions.
The ionic diffusion coefficients have little effect on the steady flows for either homoge-
neously or heterogeneously charged channels. However the ionic valence of solvent has
remarkable influences on both the electric potential distribution and the flow velocity even
in homogeneously charged microchannels. Both theoretical analyses and numerical results
indicate that the valence and the concentration of the counter-ions dominate the Debye
length, the electrical potential distribution, and the ions transport. The present results
may improve the understanding of the electrokinetic transport characteristics in
microchannels.

Published by Elsevier Inc.
1. Introduction

Multiphysical transport has attracted a lot of attention in recent years due to its increasingly important applications in
biomedical, environmental, and energy engineering [1–5]. Electrokinetic flow, which involves multiple processes including
fluid flow, electrostatic interaction, species diffusion, and sometimes energy transfer, is one of the most typical multiphysical
transport phenomena because of the ubiquitousness of the electrolyte solution in nature and engineering applications [6,7].
Although numerous theories and models for large-scale electrokinetic flows have been developed for almost one century
[6,8], only in recent decades has the electrokinetic transport shown awakening importance for various applications, espe-
cially at micro- and nanoscale. For instance, a better understanding of nanoscale electrokinetic flows will help understand
the mass and information transport in ion channels in cells [9,10]. Accurate predictions of electroosmotic flow in microfluidic
devices may shed light on optimal designs of bio-macromolecules diagnostics [2,11–13] and microscale energy systems like
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micro fuel cells [5] and batteries [14,15]. Electrokinetic flow is also an important non-mechanical actuating technique for
microfluidics [12], and has been widely applied for pumping [16–18], mixing [19–21], and separating [11].

The Poisson–Boltzmann (PB) model, which is composed of a Navier–Stokes equation for fluid flow and a PB equation for
electric potential distribution, has been widely used for analysis and prediction of electrokinetic flows in microchannels
[6,22]. The Boltzmann distribution assumption of ions in electric double layer (EDL) leads to the decoupling between the
fluid flow and the ion distribution, which makes the predictions much easier. Many algorithms and analyses based on the
PB model have been proposed for the understanding of electrokinetic fluid mechanics and optimization of electrokinetic
microdevices [23–28]. However the Boltzmann distribution is an equilibrium model and its applicability is restricted by
its preconditions. The applicability of the Boltzmann distribution is questionable when ions have macroscopic motion
(advection or diffusion), surface is heterogeneously charged, or the bulk solution boundary condition is not satisfied in
the place sufficiently far away from the charged surface [6]. A more general model is the dynamic model which utilizes
the Nernst–Planck equation for ions transport instead of the hypothesized Boltzmann distribution [29]. In the dynamic mod-
el, each transport process is governed by the corresponding fundamental dynamic equation. The dynamic model has been
used to validate the PB model by a few researchers [30–34], and it was reported that the PB model failed in the cases of over-
lapped double layers [31,33]. However a careful review of the previous work reveals inconsistencies in the boundary treat-
ment between different models, which may be responsible for the discrepancy between the dynamic and PB model
predictions. Therefore the applicability of the PB model needs to be revisited more carefully.

Because the transport processes are influenced by each other, the governing equations in the dynamic model are coupled
together, which poses a great challenge to the numerical solution. There are several efforts in the literature to numerically
solve the coupled governing equations in the dynamic model based on the traditional PDE solvers, such as the finite-differ-
ence method (FDM) [30,32], the finite volume method (FVM) [35,36] and the finite element method (FEM) [37]. Recently Lu
et al. [38] presented a hybrid framework combining finite element and boundary element methods to solve the Poisson–
Nernst–Planck (PNP) equation for electrodiffusion. Hlushkou et al. [39] proposed a coupled lattice Boltzmann and finite-dif-
ference method to solve the dynamic model for electroosmosis in microchannels, in which the lattice Boltzmann method
(LBM) was used to model fluid flow and other governing equations were solved by the FDM. This is a good attempt to take
advantage of the flexibility and efficiency of the LBM. However the boundary condition might be inconsistent between these
two methods on the same set of grid [40]. He and Li [41] proposed a multiple LBM procedure for the electrochemical sys-
tems, but they used a local neutrality law to constrain the electric potential distribution which could be inaccurate for
charged colloids [42].

The objectives of this contribution are to: (1) present a coupled LB algorithm and framework to solve the governing equa-
tions in the dynamic model for the multiphysical transport in electrokinetic flows in microchannels; (2) clarify the ambigu-
ities in the literature on the applicability of the PB model by simulating the electroosmotic flows in microchannels using the
dynamic model and comparing the results with those from the PB model. The paper is organized as follows. In Section 2 we
introduce the governing equations and the boundary conditions of the dynamic model. In Section 3, we present our evolution
equations for all the transport processes and the coupling framework. In Section 4, after validating the accuracy and effi-
ciency of the code, we investigate the applicability of the PB model in homogeneously and heterogeneously charged micro-
channels by comparing the results from the dynamic model and the PB model. In addition, some studies that have never
been done using the PB model will also be carried out and the results will be presented.

2. Mathematical models

2.1. Governing equations

Since our scale of interest is much larger than the atomistic scale, the macroscopic hydrodynamic and electrodynamic
equations are still valid. For a multi-component constant-property Newtonian electrolyte fluid flowing in a microchannel
with no mass source, the governing equations for laminar flow are [6,43,44]
@q
@t
þr � ðquÞ ¼ 0; ð1Þ
and
@ðquÞ
@t

þ u � rðquÞ ¼ �rpþr � mrðquÞ½ � þ F; ð2Þ
where q represents the density of the fluid, t the time, u the velocity vector, p the pressure, m the kinetic viscosity, and F the
body force density which may include all the effective body forces such as the electrical field force. In the case of incompress-
ible flows, the pressure gradient can be conveniently included in F [26,45]. In this work, the fluid is only driven by the elec-
trical field force and the pressure gradient is zero in the entire computational domain.

For the ith ion species in the solute, the mass conservation equation describing transport and reaction can be written in
the general form [46]:
@Ci

@t
þr � Ji þ kiCi ¼ Ri; ð3Þ
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where Ci denotes the ionic concentration, Ji the species flux, ki a radioactive decay constant, and Ri the rate at which the ith
species is produced or consumed by chemical reactions. The flux Ji, in general, consists of contributions from advection, dif-
fusion and dispersion in addition to an electrochemical migration term. Neglecting dispersion, the flux has the form [46]
Ji ¼ �
eziDi

kT
CirW� DiðrCi þ Cir ln ciÞ þ Ciu; ð4Þ
where the first term on the right refers to electrochemical migration, the second term to aqueous diffusion, and the last term
to advective transport. This is the famous Nernst–Planck equation [29]. Here zi;Di and ci denote the ion algebraic valence, the
diffusivity and the activity coefficient of the ith species, respectively; and e; k, and T denote the absolute charge of electron,
the Boltzmann constant and the absolute temperature, respectively. The quantity W represents the local electrical potential
caused by the ionic distribution which is governed by the Poisson equation [6]
r � ðere0rWÞ ¼ �qe ¼ �
X

i

eziCi; ð5Þ
where er is the local dimensionless fluid dielectric constant, e0 the permittivity of a vacuum, and qe the net charge density.
Eqs. (1)–(5) govern the hydrodynamic and electrodynamic transport processes in electrokinetic flows. For isothermal

incompressible uniform fluids with no polarization, radiation or chemical reactions, these equations can be further simpli-
fied as
r � u ¼ 0; ð6Þ
@u
@t
þ u � ru ¼ mr2uþ F

q
; ð7Þ

@Ci

@t
þ u � rCi ¼ Dir2Ci þ

eziDi

kT
r � CirWð Þ; ð8Þ
and
r2W ¼ � qe

ere0
; ð9Þ
where F can be any kind of effective body force. In this contribution we only consider the static electrical force from an exter-
nal electric field. The general form of electrical force in microscale electrokinetic fluids can be expressed as [26]:
FE ¼ �qerWext; ð10Þ
where Wext is the external electrical potential field. Since the velocity of the electrokinetic flows in microchannels is very low,
the electromagnetic susceptibility is negligible.

When the ionic convection is negligible and the electric potential is continuously derivable, Eq. (8) has a simple steady
solution for dilute electrolyte solutions:
Ci ¼ Ci;1e�
eziW

kT : ð11Þ
Substituting Eq. (11) into Eq. (9) yields the famous nonlinear PB equation [47]:
r2W ¼ � 1
ere0

X
i

eziCi;1 exp � ezi

kT
W

� �
: ð12Þ
The PB model leads to the decoupling of the electric potential distribution from the fluid flow, which makes the solution
much easier than the dynamic model. The PB model has been numerically solved by numerous methods successfully
[18,23,24,26,27,32,40,48–50].

2.2. Boundary conditions

We assume a longitudinal spatial periodicity for the finite domain under consideration because the length of a microflu-
idic channel is usually very large compared to the width. The periodic boundary conditions include the continuities between
inlet and outlet:
Ci;inlet ¼ Ci;outlet; ð13Þ
uinlet ¼ uoutlet ; ð14Þ
and the constant gradient of the external electrical field:
E ¼ �rWext: ð15Þ
At the liquid–solid interface X, the non-slip velocity and the zero normal flux conditions are applied:
uX ¼ 0 ; ð16Þ
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ðv � JiÞX ¼ 0; ð17Þ
where v is the outer unit vector normal to X. In case of chemical reactions occurring at the interface, the normal flux is re-
lated to the reaction rates. Substituting Eq. (4) into Eq. (17) leads to:
v � rCið ÞX
Ci

¼ � ezi

kT
v � rWð ÞX: ð18Þ
Integrate both sides of Eq. (18) on the boundary and we can further simplify the boundary condition as:
Ci;X ¼ Ci;me�
ezi
kT ðf�WmÞ; ð19Þ
where Ci;m and Wm denote the ith ionic concentration and the electrical potential at the middle of the channel respectively,
and f is the zeta potential. Thus the boundary condition for ionic concentration becomes a simple Dirichlet-type one. The
simplification of Eq. (19) can improve the computational efficiency significantly and therefore has been frequently employed
in previous work [30,32,35,36].

The electrical potential at the interface can be imposed through either the surface charge density ðrÞ or the zeta potential
ðfÞ. The former leads to the Neumann-type and the latter to the Dirichlet-type boundary conditions, respectively. A recent
study using the LBM has proved that these two types of boundary conditions are consistent, but the latter one has a better
computational efficiency [49]. Therefore we use the Dirichlet boundary condition for the electric potential equation (Eq. (9)):
wX ¼ f: ð20Þ
3. Numerical methods

The governing equations are solved using coupled multiple LBMs. The LBM is a relatively new numerical method for sim-
ulating complex flow and transport phenomena [51,52]. Unlike conventional computational methods based on macroscopic
continuum equations, in the LBM, the mesoscopic Boltzmann equation is used to determine macroscopic transport dynam-
ics, and the governing equations are solved by tracking distribution functions of species packets on lattices [53]. The LBM is
flexible, broadly applicable, and straightforwardly adaptable for parallel computing. Due to the ease of incorporating com-
plex boundary conditions, it has been successfully applied to multiphase and multi-component transport [54,55], multi-
physicochemical transport through porous media [50,56,57], and solid particle suspensions [58–61].

In the rest of this section we introduce the LB evolution equations, the boundary treatments, and the flow scheme of our
numerical framework.

3.1. Evolution equations

3.1.1. Evolution equation for hydrodynamics
The evolution equation for laminar flow driven by an external force has the form [51,62]
faðrþ eadt; t þ dtÞ � faðr; tÞ ¼ �
1
sm

faðr; tÞ � f eq
a ðr; tÞ

� �
þ dtFa; ð21Þ
where r denotes the position vector, ea the discrete velocities, dt the time step, and sm the dimensionless relaxation time.
Fig. 1. Direction system for D2Q9 model.
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For the commonly used two-dimensional nice-speed (D2Q9) model shown in Fig. 1, the discrete velocities are,
ea ¼
0; 0ð Þ a ¼ 0
cos ha; sin hað Þc; ha ¼ a� 1ð Þp=2 a ¼ 1� 4ffiffiffi
2
p

cos ha; sin hað Þc; ha ¼ a� 5ð Þp=2þ p=4 a ¼ 5� 8

8><
>: ; ð22Þ
where c is the lattice speed defined as dx=dt , dx the lattice constant (grid size). The density equilibrium distribution f eq
a can

thus be expressed as [51,63]
f eq
a ¼ xaq 1þ 3

ea � u
c2 þ 9

ðea � uÞ2

2c4 � 3u2

2c2

" #
; ð23Þ
with
xa ¼
4=9 a ¼ 0
1=9 a ¼ 1� 4
1=36 a ¼ 5� 8

8><
>: ð24Þ
The relaxation time for fluid flow is related with the fluid viscosity by
sm ¼
3m
cdx
þ 0:5; ð25Þ
For the electrokinetic flow in a long microchannel driven by an external electric field, the external force in the discrete LB
equation is [64]
Fa ¼
3qeE � ðea � uÞ

qc2 f eq
a : ð26Þ
After evolution, the macroscopic density and velocity can be calculated using
q ¼
X

a
fa; ð27Þ

qu ¼
X

a
eafa: ð28Þ
3.1.2. Evolution equations for ion transport
Inspired by the process of LBM solving the Navier–Stokes equation, people have proposed several models for solving the

advection-diffusion equations [26,64–66]. We use the following evolution equation to solve the ion transport governing
equation for the ith ion species, Eq. (8) [26,49,66]:
ga rþ eadt;Di
; t þ dt;Di

� �
� ga r; tð Þ ¼ � 1

sDi

ga r; tð Þ � geq
a r; tð Þ

� �
þxadt;Di

1� 0:5
sDi

	 

eziDi

kT
r � CirWð Þ; ð29Þ
where sDi
is the dimensionless relaxation time for the ith ion transport related to the diffusion coefficient Di, and dt;Di

the
corresponding time step.

For a D2Q9 lattice system, the equilibrium distribution is [64,66]
geq
a ¼

� 2Ci
3

u2

c2
Di

a ¼ 0

Ci
9

3
2þ 3

2
ea �u
c2

Di

þ 9
2

ea �u
c2

Di

� 3
2

u2

c2
Di

� �
a ¼ 1� 4

Ci
36 3þ 6 ea �u

c2
Di

þ 9
2

ea �u
c2

Di

� 3
2

u2

c2
Di

� �
a ¼ 5� 8

8>>>>>><
>>>>>>:

ð30Þ
and the dimensionless relaxation time is calculated by [49]
sDi
¼ 3Di

2cDi
dx
þ 0:5; ð31Þ
with cDi
representing the diffusion lattice speed for the ith ion. The value of cDi

is independent of c in Eq. (25) and can be
assigned any positive value as long as the value of sDi

is within (0.5,2) [49,66]. Different values of cDi
lead to different time

steps for each ion transport evolution since
dt;Di
¼ dx=cDi

: ð32Þ
The final ionic concentration for the ith ion can be calculated after evolution by
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Ci ¼
X

a
ga þ

dt;Di

2
eziDi

kT
r � CirWð Þ: ð33Þ
3.1.3. Evolution equation for electrodynamics
In order to solve the static electrodynamics equation, Eq. (9), using LBM, we rewrite it by adding a time-dependent term

[49]:
@W
@t
¼ r2Wþ qe

ere0
: ð34Þ
The evolution equation for the electrical potential on the two-dimensional discrete lattices can then be written as [26,49,66]
haðrþ Dr; t þ dt;wÞ � haðr; tÞ ¼ �
1
sw

haðr; tÞ � heq
a ðr; tÞ

� �
þxadt;w 1� 0:5

sw

	 

qe

ere0
; ð35Þ
where sw is the dimensionless relaxation time for electrical potential transport and dt;w the time step.
Again for a D2Q9 lattice system, the equilibrium distribution of the electric potential evolution function h is [26,49]
heq
a ¼

0 a ¼ 0
W
6 a ¼ 1� 4
W
12 a ¼ 5� 8

8><
>: : ð36Þ
The dimensionless relaxation time is calculated by [49]
sw ¼
3

2cwdx
þ 0:5; ð37Þ
where cw is the electrostatic lattice speed, which, similar as cDi
, can be any positive value only ensuring the relaxation time sw

within (0.5, 2) [49]. The time step is given by
dt;w ¼
dx

cw
: ð38Þ
The steady solution of the evolution Eq. (35) has been proved consistent with the macroscopic Poisson equation, Eq. (9). The
macroscopic electrical potential can be calculated using [49]
W ¼
X

a
ha þ 0:5dt;wxa

qe

ere0

	 

: ð39Þ
3.2. Boundary condition implementations

Boundary treatments are very critical to any numerical methods. Since we are solving several governing equations on the
same set of lattices, i.e., dx for all evolution equations is the same, the consistency of the boundary implementations is essen-
tial. Although the ‘‘bounce-back” model is popular and easy to use, it has only first-order accuracy. In this contribution, we
introduce second-order accurate boundary conditions for all the models.
3.2.1. Non-slip model for hydrodynamics
For stationery walls, the unknown density distribution functions at the wall are determined from the local equilibrium

distribution function with a ‘‘counter slip” velocity [67,68]. Take the upper wall as an example. The populations f1; f2; f3; f5

and f6 are known from the previous evolution step, but f4, f7, and f8 need to be determined from the boundary condition.
The ‘‘counter slip” velocity is defined by
u0 ¼ 6
�ðf1 � f3 þ f5 � f6Þ

q0
c; ð40Þ
where
q0 ¼ 6 f2 þ f5 þ f6ð Þ: ð41Þ
Thus the unknown density distributions are calculated from the equilibrium distribution function
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f4 ¼
1
9
q0 1þ 3

u0

c
þ 9
ðu0Þ2

2c2 �
3ðu0Þ2

2c2

" #
; ð42aÞ

f7 ¼
1

36
q0 1þ 3

u0

c
þ 9
ðu0Þ2

2c2 �
3ðu0Þ2

2c2

" #
; ð42bÞ

f8 ¼
1

36
q0 1þ 3

u0

c
þ 9
ðu0Þ2

2c2 �
3ðu0Þ2

2c2

" #
: ð42cÞ
3.2.2. Boundary treatment for ions
Several boundary treatment methods have been proposed to deal with the Dirichlet-type boundary conditions for advec-

tion-diffusion equations. Here we follow D’Orazio’s approach [69,70] which is of second-order accuracy and consistent with
the non-slip model for fluid flow. In this approach, the unknown populations are assumed to be from an equilibrium distri-
bution at a concentration Ci;0 which is determined by the given constraints. Again for the upper wall, the unknown g4; g7, and
g8 can be obtained from the equilibrium distribution of Ci;0 which is:
Ci;0 ¼ 3Ci;X � 3Sg � 1:5dt;Di

X
a

xa
eziDi

kT
r � CirWð Þ; ð43Þ
where Sg is the sum of known populations coming from the internal nodes and nearest wall nodes
Sg ¼ g0 þ g1 þ g2 þ g3 þ g5 þ g6; ð44Þ
Thus the unknown distributions are
g4 ¼ Ci;0=6; ð45aÞ
g7 ¼ Ci;0=12; ð45bÞ
g8 ¼ Ci;0=12: ð45cÞ
3.2.3. Boundary treatment for electric potential
The Dirichlet boundary of electric potential can be treated similarly as that for ions [69,70]. Still for the upper wall, the

h4;h7, and h8 can be obtained from the equilibrium distribution of W0:
Fig. 2. Flow chart of the coupled lattice Boltzmann method.
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W0 ¼ 3WX � 3Sh � 1:5dt;w

X
a

xa
qe

ere0
; ð46Þ
where Sh is the sum of known populations coming from the internal nodes and nearest wall nodes
Sh ¼ h0 þ h1 þ h2 þ h3 þ h5 þ h6; ð47Þ
Thus the unknown distributions are
h4 ¼ W0=6; ð48aÞ
h7 ¼ W0=12; ð48bÞ
h8 ¼ W0=12: ð48cÞ
3.3. Flow scheme of the numerical framework

Since the governing equations, Eqs. (6)–(10), are coupled together, we implement an iterative scheme as shown in Fig. 2.
In each iteration procedure, the electric potential distribution is first obtained through the evolutions of electric potential to
the steady state based on the evolution Eq. (35), in which the charge density is calculated from the ion distributions of the
last iteration based on Eq. (5) (or from the initial state for the first iteration). Then, the ionic concentration for each species is
calculated by the evolution Eq. (29) for NCi

steps. The time step, dt;Di
, may differ for different ions, but the total time step

within one iteration has to be the same value for all ions, i.e., ttotal ¼ NCi
� dt;Di

. The last step in the iteration is to solve the
evolution Eq. (21) to obtain the velocity field. The evolution number, Nv , has to ensure the total time step in the iteration
to be ttotal, i.e., Nv ¼ ttotal=dt .

Thus the coupled governing equations are solved by the iterative multiple lattice evolution models. This scheme is able to
simulate time-dependent process with a very low Reynolds number. In this contribution, we only apply it to steady flows.

To judge if the simulation reaches steady state or not, we define the total divergence rates for electric potential conver-
gence and velocity convergence as
ddr
W ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
r

WnðrÞ �Wn�1ðrÞ
WnðrÞ

 !2
vuut ; ð49Þ

ddr
v ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
r

vnðrÞ � vn�1ðrÞ
vnðrÞ

	 
2
vuut ; ð50Þ
where r denotes the location vector, and the superscript ‘‘n” represents the nth iteration. The simulation stops and the results
are assumed to be steady state once the divergence rate is less than a given error tolerance (typically 10�6).

The current method preserves the advantages of the LBM and is suitable for complex flows and parallel computing
[56,57]. Although only 2D problems are considered in this paper, the algorithm can be easily extended to 3D.
4. Results and discussion

In this section, we simulate the electrokinetic flows in homogeneously and heterogeneously charged microchannels using
our coupled LB codes, and compare the results with the PB model, to validate our codes and to investigate the conditions
under which the PB model will fail.
Fig. 3. The homogeneously charged microchannel.
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4.1. Accuracy and efficiency

4.1.1. Benchmark
To validate the present algorithm and code, we first simulate the electroosmotic flow in a homogeneously charged micro-

channel, as shown in Fig. 3, with a width H of 1 lm. A 100� 10 uniform grid is used. A 1:1 electrolyte solution is considered
and the bulk ionic concentration C1 ¼ 10�5 M. The zeta potential for both walls is f ¼ �5 mV. The other properties and phys-
ical parameters are: the fluid density q ¼ 999:9 kg=m3, the dielectric constant ere0 ¼ 6:95� 10�10 C2=J m, the dynamic
viscosity l ¼ 0:889 m Pa s, the temperature T ¼ 273 K, the diffusion coefficients for both ions D1 ¼ D2 ¼ 1� 10�8 m2=s
and E ¼ 1� 103 V=m.

Since the x direction is periodic, there is no y-directional flow across the channel. Therefore the electric potential distri-
bution obtained from the coupled dynamic equations, Eqs. (6)–(9), should be consistent with those from the PB model for
thin EDL. Fig. 4 compares the electric potential and velocity profiles across the channel between the present simulations
and the classical PB model. In the PB model, the electric potential is obtained by solving the nonlinear PB equations numer-
ically and the velocity field is solved by the LPBM [26,45]. The ionic concentration is high enough for this case to ensure no
interaction between the double layers of both walls. No chemical reactions are considered at the interfaces and the boundary
conditions for the present dynamic equations are consistent with those for the PB model. The good agreement between the
present dynamic model and the PB model validates the present algorithm and the codes.
4.1.2. Unphysical parameters
There are two unphysical parameters, the lattice speed (cÞ and evolution number per iteration ðNÞ. In the present algo-

rithm they can influence the stability, the accuracy and the efficiency of simulations.
Since the physical characteristic times for fluid flow and species diffusions differ significantly, it is hard to find a common

lattice speed to ensure that the dimensionless relaxation time ðsÞ for each evolution equation is within (0.5, 2). We use dif-
ferent lattice speeds for different evolution equations. Because all the boundary condition treatments employed are of sec-
ond-order accuracy, the accuracy will not change with the value of the lattice speed [67]. As reported before, a larger lattice
speed leads to a lower convergence speed [49], but a better stability. One has to balance between the stability and the con-
vergence speed. For the present coupling algorithm, it is better to advance each iteration in a moderate level, i.e., not too
drastic, to avoid numerical fluctuation or even divergence, especially for the ion transport.

The evolution number per iteration is the other unphysical parameter that needs to be optimized and balanced between
accuracy and efficiency. To ensure the same total time step for each iteration, the evolution number has to satisfy
NC1 � dt;D1 ¼ NC2 � dt;D2 ¼ Nv � dt; ð51Þ
where Nv is usually much greater than NC1 and NC2 .
Fig. 5 shows the maximum x-velocity for different evolution numbers per iterative step after finite iterative steps (500),

and CPU time per iterative step, where C1 ¼ 10�5 M;f ¼ �50 mV;E ¼ 5� 106 V/m and the other parameters are same as
those in Section 4.1.1. The code was run on the Saguaro cluster at LANL, which has 64� 2 AMD Opteron CPUs at
2.4 GHz. The results indicate that the simulated velocity becomes independent of NC1 and stable when NC1 P 100, but
the CPU time increases sharply when NC1 P 2000. Another calculation for 2:2 electrolyte solute shows that the simulated
results becomes unstable again after NC1 P 2000. Therefore for this case, NC1 should be an integer within [100, 1000] for
good accuracy and satisfactory efficiency. In all the following simulations of this work, we use NC1 ¼ 1000.



Fig. 5. Effects of evolution step number per iterative step on computational accuracy and efficiency.
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4.2. Effects of the EDL thickness

The applicability of the PB model has been often questioned when the EDL is thick relatively to the channel width. Dis-
crepancies have been reported between results of the PB model and the dynamic model and the breakdown of the PB model
was always ascribed to the EDL overlap and interactions [30–32,35,36]. However, after a careful review of the previous work,
we find that the inconsistent boundary conditions for different models may be the main reason for such deviations in these
reports [31]. Our new algorithm and codes enable us to examine the effects of the EDL thickness on the applicability of the PB
model.

Still for a long straight microchannel as shown in Fig. 3, we change the bulk ionic concentration C1 to vary the EDL thick-

ness, namely the Debye length, defined as k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e0erkT=ð2e2z2

i C1Þ
q

for 1:1 electrolyte solution [6], and keep the other param-

eters the same as those in Section 4.1.1. Based on this definition, the EDL thickness for the case in Fig. 4 is 0.18 of the channel
width, i.e., k ¼ 0:18 H.

Fig. 6 compares the results for different EDL thickness from the dynamic model and from the PB model. For the EDL thick-
ness ðkÞmuch smaller than the channel width ðHÞ, the ions distribution and flow velocities from both models are in excellent
agreement, as shown in Fig. 4 and Fig. 6(a). When k is comparable to H, like in Fig. 6(b), the ion distribution from the PB
model begins to deviate from that from the dynamic model, though the deviation is very small ð< 1%Þ. This deviation
increases with the increase of the EDL thickness. However the velocity profiles from both models are still in good agreement
even when k is about 10 H as shown in Fig. 6(d). Unlike previous studies showing that the deviation appeared as soon as the
EDLs overlapped, the present results show that the PB model is applicable for a wide range of EDL thickness. For ions
distribution predictions, the PB model is accurate for k no greater than H; while for flow modeling, the PB model is still
applicable even for k as large as 10 H.
4.3. Effects of heterogeneously charged surface

Heterogeneously charged surfaces are usually used to change the flow field or the wetting property of interfaces, which
have many important applications in microfluidics, such as micromixing enhancement [19–21], bio-macromolecules sepa-
ration, and microchip switch [13,71,72].

For the homogeneously charged long channel, there is no difference for the predicted electric potential distributions
between the PB model and the dynamic (PNP and NS) model since the electric potential distribution is fully developed every-
where. However for the heterogeneously charged channel, the electric potential distribution is not developed, especially near
the interface between surfaces charged differently, which may lead to deviation of the electric potential distribution pre-
dicted by the PB model from that by the dynamic model. Similar studies can be found in the ‘‘entry flow” [32] and in the
step charged channels [30]. In this section, we are focusing on how the heterogeneous surface charge influences the electric
potential distribution in the channel and whether these effects invalidate the PB model.

Fig. 7(a) shows a symmetrical arrangement of surface charge in a heterogeneously charged microchannel. Each wall is
charged with uniform charge density, but with a boundary electric potential of f for one half and �f for the other half.
The channel is also periodic in x direction. Fig. 7(b) shows a typical velocity vector field with four vertices in this domain.
4.3.1. Zeta potential effects
We first consider the effect of zeta potentials on the electric potential distribution. To avoid the effects from the velocity

field, we set the external electric field strength to a low value: E ¼ 1� 103 V=m. To exclude the effect from different diffu-
sion coefficients, we set them to the same value for both ions: D1 ¼ D2 ¼ 2� 10�9 m2/s. The channel width is 1 lm and



Fig. 6. Comparisons of net charge density and x-velocity profiles for different EDL thicknesses.
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Fig. 7. Schematic of surface charge arrangement of a microchannel and its velocity field driven only by an external electric field.

Fig. 8. Electric potential profiles at the A–A section for different zeta potentials.
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100� 100 grids are used. We vary the zeta potential f from �5 mV to �100 mV and keep the other parameters the same as
those in Section 4.1.1.

When the absolute value of the zeta potential is small, such as 50 mV or lower, the electric potential distribution obtained
from the PB model agrees well with that from the dynamic model. Fig. 8(a) shows the electric potential profiles at the A–A
section when f = �50 mV, where the two curves are almost the same. As the zeta potential increases, the result from the PB
model begins to differ from that from the dynamic model. Fig. 8(b) illustrates the electric potential profiles for f = �100 mV.
For a high zeta potential, the electric potential profile predicted from the dynamic model is not as developed as that from the
PB model. This result indicates that it is necessary to replace the PB model with the present dynamic (PNP and NS) model for
heterogeneously charge surfaces with high zeta potentials.
4.3.2. Velocity field effects
Since the streamlines are not parallel to the surfaces any more for heterogeneously charged channels, the convection of

ions will change the ions distribution and may consequently influence the electric potential distribution. Similar cases can be
found even in homogeneously charged channels with blocks, where the velocity field is changed by the geometry. For het-
erogeneously charged channels, the advection strength can be easily controlled by varying the external electric field strength
(EÞ. Fig. 9 shows the electric potential distributions at the A–A and the C–C sections and corresponding x-velocity profiles for
different ionic advection strength controlled by the electric field strength (EÞ. The zeta potential is f ¼ �50 mV and the exter-
nal electric field strength vary from 1� 103 to 2� 107 V=m. The other parameters are the same as those in 4.3.1.

When the electric field strength is small, such as E ¼ 1� 103V=m, the ions advection is weak and negligible so that the
electric potential distribution from the dynamic model almost coincides that from the PB model. As the driving force
increases, the ions advection becomes stronger and the predicted electric potential distribution deviates more from the
PB predictions. When E ¼ 1� 106 V=m which can be actually easily realized in experiments, the maximum relative error
between the two models for the electric potential is as large as 172%. This result indicates that the present dynamic model



Fig. 10. Electric potential profiles for different ionic diffusion coefficient ratios at the A–A section.

Fig. 9. Velocity field effects on the electric potential distributions controlled by the external electric field strength for heterogeneously charged
microchannels.
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will better predict and interpret results for the applications of heterogeneously charged channels, such as micromixing
enhancements by electrokinetic flows.



Fig. 11. Electric potential and velocity distributions in homogeneously charged channels for different ionic valence ratios.
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Besides the external electric field strength, the velocity field can be also influenced by many other factors. For examples,
the ionic advection in the heterogeneously charged channel is also related to the ionic concentration ðCi;1Þ, the fluid viscosity
m, and the zeta potential ðfÞ. In engineering applications, the flow may also be driven by other forces, such as pressure gra-
dient ðDpÞ. The channel may not be a smooth straight one if there are blocks or roughness and cavitations inside. Each of
these factors may lead to considerable contribution of ionic advection to the ion redistribution. For these cases, the present
model will provide more accurate predictions.

4.3.3. Diffusion coefficient effect
Since the electric potential distribution in a heterogeneously charged microchannel is not fully developed, it is interesting

to find out whether the ionic diffusion coefficients and their differences have any influence on the electric potential distri-
butions. For the same microchannel as above, we change the diffusion coefficient values and their ratios from 1:1 to 1:100.
Fig. 10 shows the electric potential profiles at the A–A section for different ionic diffusion coefficients, where
f ¼ �50 mV;E ¼ 1� 103 V=m and the other parameters are same as those in Section 4.3.1. The results indicate that the effect
from the ionic diffusion coefficients is negligible for the electroosmotic flows in long microchannels. The reason may be that
the characteristic time of ionic diffusion is much smaller than those of fluid flow and ions advection.

4.4. Effects of ionic valence

Although the multi-valence ions have been reported to influence nanoscale electrokinetic transport greatly [73,74], the
effects of ionic valence on the electroosmotic flows in microchannels have never been investigated to the best of the authors’
knowledge. The reason is that the net charge term ðqeÞ is hard to be linearized if the absolute value of valence ratio jz1 : z2j, is
not 1:1. However it is not a problem for the present algorithm because there is no need for linearization at all.

Consider a homogeneously charged microchannel as shown in Fig. 3. The bulk solvent concentration C1 ¼ 1� 10�5 M,
the external electric field strength E ¼ 5� 106 V=m, the zeta potential f ¼ �50 mV and the other parameters are the same
as those in Section 4.1.1. Fig. 11 compares the electric potential and velocity distributions for different ionic valence ratios.
Four cases are considered: jz1 : z2j ¼ 1 : 1;1 : 2;2 : 1 and 2:2, respectively. z1 denotes the valence of the positive ions and z2

that of the negative ones. For the 1:1 valence ratio, the results from a double bulk solvent concentration (2C1Þ are also plot-
ted in the same figures. The results show: (1) the ionic valence does influence the electric potential distribution and the
velocity profile in electroosmotic flows. Among the different valence ratios, the 1:1 case leads to the smallest averaged elec-
tric potential (absolute value) and velocity across the channel when the other conditions are the same. The electric potential
profiles and velocity distributions for the 2:1 and 2:2 valence ratios are close; while those results for the 1:2 valence at a bulk
ionic concentration of C1 and the 1:1 valence ratio at 2 C1 are close. (2) The corresponding Debye length varies with the
valence ratio as well. Fig. 11(a) indicates that the EDLs for 1:1 and 1:2 valence ratios are thicker than those for 2:1 and
2:2 ones. The valence number of positive ions seems to dominate the Debye length in the present negatively charged walls.

Our results apparently contradicts a popular definition of the Debye length [75]
k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e0erkT=e

X
i
z2

i Ci;1

q
; ð52Þ
which will lead to the same Debye length between 1:2 and 2:1 valence ratios.
To understand these results, let us revisit the original PB equation, Eq. (12), for two-species/ions solutions:
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r2W ¼ �
qe;1

ere0
exp � e

kT
z1W

� �
� exp � e

kT
z2W

� �h i
; ð53Þ
where qe;1 ¼ ez1C1;1 ¼ �ez2C2;1 denotes the bulk charge density, z1 is positive and z2 negative, C1;1 and C2;1 are the species
bulk ionic concentrations for positive and negative ions, respectively. For jz1 : z2j ¼ N : N;C1;1 ¼ C2;1 ¼ C1. When
jz1 : z2j ¼ 1 : 2;C1;1 ¼ 2 C1 and C2;1 ¼ C1. If jz1 : z2j ¼ 2 : 1;C1;1 ¼ C1 and C2;1 ¼ 2 C1.

Eq. (53) indicates that if the electric potential, W, is negative, the first term in the square bracket of the right hand side is
much greater than the second term, i.e., the valence of positive ions dominates the potential distribution; otherwise the
valence of negative ions controls the Debye length. Such an analysis agrees well with our numerical results that the valence
and the concentration of the counter-ions dominate the Debye length. A greater valence of the counter-ions leads to a
smaller Debye length. Therefore the definition in Eq. (52) is only valid for 1:1 electrolyte solutions.
5. Conclusions

In this contribution, we developed a coupled multiple LBM framework to solve the dynamic model for electrokinetic flows
in microchannels. The governing equation for each transport is solved by an LBM and the whole transport process is simu-
lated through an iteration procedure. We solve all the governing equations on the same set of lattices with consistent bound-
ary condition treatments. The present algorithm and codes have been validated by comparisons with the results from the
lattice PB method for homogeneously charged channels when the ionic advection is negligible.

Using the present method, the applicability of the PB model for electrokinetic flows in microchannels is studied. For
homogeneously charged long channels, the PB model can provide good predictions for electric potential distributions until
the electric double layers fully overlap which occurs when the thickness of the EDL equals to the channel width. The elec-
troosmotic velocity prediction from the PB model is even good when the thickness of the EDL is 10 times of the channel
width. For heterogeneously charged microchannels, a high zeta potential will make the PB prediction breakdown since
the electric potential distribution is not fully developed. Because the streamlines are not parallel to the surfaces any more,
an enhanced velocity field may cause the PB model to fail. However the ionic diffusion coefficients do not have noticeable
effects on the steady flows for either homogeneously or heterogeneously charged channels. For the first time, the effects of
ionic valence of solvent have been studied on the electric potential and flow velocity distributions in homogeneously
charged microchannels. It is found that the valence and the concentration of the counter-ions dominate the Debye length,
the electrical potential distribution and ions transport. The present results may improve the understanding of the electroki-
netic transport characteristics in microchannels.
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